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Why aluminium oxide?

• Increased use of p-type Si in detectors for high-luminosity 

environments

• Higher mobility of electrons in Si → segmentation of n+ implants

• SiO2 with its positive oxide charge does not insulate the segments 

without additional p-spray/p-stop implant

Aluminium oxide (Al2O3)

• High negative charge (~ 1012 cm-2)

• Can be deposited at low temperature

• Good dielectric properties - allows for higher oxide capacitances
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Why aluminium oxide?
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Atomic layer deposition

• A film is deposited by alternate pulsing of gaseous precursors over 

a substrate 

• No gas-phase reactions, purges between the precursor pulses → 

self-limiting surface reactions
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Atomic layer deposition

• A film is deposited by alternate pulsing of gaseous precursors over 

a substrate 

• No gas-phase reactions, purges between the precursor pulses → 

self-limiting surface reactions

• Film growth slow and occuring in cycles → very thin layers can be 

grown with good precision

• Good film uniformity over relatively large areas, conformal growth
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Considerations on Al2O3 in processing

• Film thickness; thermal treatments (metal sintering, firing) 

• Oxygen precursor in ALD

• The best-known process for Al2O3 uses water as oxidant: indeed, best 

passivation quality (in terms of carrier lifetimes), best diode breakdown 

properties

...  but large blister-like delamination areas – unusable in pixelated devices*

• Addition of ozone improves performance → consecutive pulsing of H2O  

and O3
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Many useful insights and characterization methods 

from photovoltaic industry and research

... however, transfer to detector processing requires adaption

* cf. backup slides J. Ott, TREDI 2020
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Wet oxidation

Alignment marks

Ion implantation

Dry oxidation (implant drive-in)

Thermal oxide removal

Al2O3 field insulator

TiN bias resistors

Al metallization

Al2O3 surface passivation

Under-bump metallization



Characterization

Single-pad diodes

• IV

• CV

• TCT with red and IR laser 
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Characterization

• MOS capacitors

• CV → Cox, Vfb → Qeff

• ≈ -3∙1012 cm-2

• Resistor structures

• IV → resistance: ≈ 15 kΩ / pixel resistor
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AC-coupled sensor
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AC-coupled pixel sensor

• 52x80 double columns, pixel pitch 100×150 µm

• Capacitive coupling using Al2O3 and TiN biasing resistor: 

separation of DC leakage current from signal

• Two different bias grid schemes: bias line by implant or metal 

line

• TiW/Au under-bump metallization on sensor realized by lift-

off lithography on individual samples, not full wafer
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AC-coupled pixel sensor
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Implanted bias line

Metal bias line

10 µm

38 µm

Drawing not to scale



AC-coupled pixel sensor
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To bias ring

Cox: 12.3 pF

CSi: 6 fF

For 100×150 µm area: 

p+

n+

p-type bulk

HV

Drawing not to scale



AC-coupled pixel detectors

• Sensors flip-chip bonded to PSI46dig readout chip, from CMS 

Pixel outer layers Phase-I upgrade

• Configured and tested with detector test board (DTB) and 

pXar software

• Dead pixels

• Trimming = fine-tuning of individual pixel thresholds through trimbits

• Adjusting of pulse height / gain pedestal

• Finding and masking of hot pixels

• Testing with laboratory gamma ray sources
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AC-coupled pixel detectors

• Increase in leakage current – especially if bias voltage is 

ramped too fast – soon after full depletion of the sensor

• Current flow over the surface or the edge…
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• Measurements close to depletion 

voltage, ca. -40 V

• Trimming to low thresholds not 

feasible: 100-120 (5-6 ke-) as 

opposed to CMS pixel sensor 

default 35 (1.75 ke-)



AC-coupled pixel detectors

• Testing with gamma ray sources: 

+ good for “calibration” and understanding the properties of our 

detector

- no external triggering possible, very low absorption in Si

• Limited energy range due to a) lower absorption of Si towards 

higher energies, b) saturation of PSI46dig amplifier and ADC

• Mainly: Am-241 with 26.3 keV and 59.5 keV, Ba-133 with 31 keV 

and 81 keV, (Co-57 120 keV)
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AC-coupled pixel detectors

• Typically 10-20 dead pixels / assembly: < 0.5 % 

• Similar number of hot or noisy pixels masked
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• Clustering by obtaining pixel-by-pixel 

hit information: may improve 

resolution if there is charge sharing 

between pixels



AC-coupled pixel detectors

Trimming
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T 100 (5 ke-)T 65 (3.25 ke-)

Q (Vcal)Q (Vcal)



AC-coupled pixel detectors
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Am-241Ba-133

59.5 keV: 340 (331)26.3 keV: 140 (146) 31 keV: 170 (172) 

Q (Vcal)Q (Vcal)

81 keV: (450) 

Sources



AC-coupled pixel detectors

Clustering
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59.5 keV: 300 (331)26.3 keV: 110 (146) 

Q (Vcal) Q (Vcal)



AC-coupled pixel detectors

Sample 2: 8 µA, T 100

Sample 1: 150 nA, T 120
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• De-coupling of 

(high) current 

from performance 

in terms of noise 

and energy 

resolution

• Leaking of charge 

into implanted 

bias line?

Q (Vcal)

Q (Vcal)



Summary

• We have fabricated single pad diodes and pixel detectors 

using aluminium oxide: no SiO2 left, no p-spray/p-stop

• AC-coupling on sensor using Al2O3 and nitride biasing resistors

• Material and basic electrical properties studied with diodes, 

oxide properties from MOS capacitor measurements

• Expected high negative oxide charge, leakage currents okay

• Functionality of pixel detectors verified by testing with 

radioactive sources

• Testing with existing readout ASIC and test board is convenient, but 

cannot blindly use the same settings as for DC-coupled CMS 

Phase-I pixel detectors (need e.g. higher thresholds) 
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Next steps

• More statistics with present and additional samples, further 

optimization of bias and trimming settings

• Hit efficiency  and charge collection efficiency, spatial 

resolution from test beam data

• Also check for leakage to bias line!

• Investigate HfO2 in pixel area for more dielectric strength 

• Patterning not trivial: investigating chemical-mechanical polishing

19.2.2020

J. Ott, TREDI 2020

23



HfO2 patterned by CMP
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Backup



Considerations on Al2O3 in processing
H2O as precursor:
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→ ”blistering” of Al2O3 film as consequence of H segregation to interface 

→ blisters can be almost the same size as pixels! 
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Proton microprobe
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At RBI IBIC facilities, cf. Aneliya’s talk

PSI46dig-geometry AC-coupled pixel sensor with Al2O3 insulator

https://www.irb.hr/eng/Research/Divisions/Division-of-Experimental-

Physics/Laboratory-for-ion-beam-interactions
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Observations
• Reduction of Neff and subsequent type inversion with 

increasing gamma ray dose

• ”clean”, no double junction effect

• The same phenomenon is visible also for 2017 batch, but 

there not up to SCSI due to lower starting resistivity = higher 

doping

• Leakage current scales well with gamma ray dose

• Does not appear to affect charge collection significantly

Acceptor removal? Donor creation? 

Hole trapping due to Al2O3?
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Summary

• Al2O3 films were successfully integrated into a 6” Si detector 

process as replacement for the SiO2 + p-spray/p-stop entity

• Devices are well characterizable by standard methods: CV, IV, TCT

• These results tell more about the MCz Si bulk properties than the 

insulator oxide

• Positive space charge building up due to irradiation, may lead to type 

inversion depending on initial doping concentration

• Interpretation of MOS capacitor CV curves for extraction of oxide charge 

requires some considerations/assumptions and comparison with pad CV 

data
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What next

• Further characterization of pixel sensors

• Flip-chip bonding

• Evaluation of the assembly in the lab and at test beam

• Annealing..?

• So far, no anneal after gamma irradiation, all measurements at RT

• Irradiation with p, n

• Defect spectroscopy (DLTS) to study mechanism behind acceptor 

compensation
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