

AC-coupled pixel detectors with aluminium oxide field insulator on p-type MCz silicon

<u>Jennifer Ott</u>^{1,2}, S. Bharthuar^{1,3}, E. Brücken¹, A. Gädda^{1,4}, M. Golovleva^{1,5}, S. Kirschenmann^{1,3}, V. Litichevskyi¹, P. Luukka^{1,5}, L. Martikainen^{1,3}, T. Naaranoja^{1,3}, I. Ninca¹, M. Rantanen¹, M. Bezak⁶, V. Chmill⁶, J. Härkönen⁶, M. Kalliokoski^{2,6}, A. Karadzhinova-Ferrer⁶

¹ Helsinki Institute of Physics, Helsinki, Finland
² Aalto University School of Electrical Engineering, Espoo, Finland
³ Department of Physics, University of Helsinki, Finland
⁴ Advacam Ltd., Espoo, Finland
⁵ Lappeenranta University of Technology, Finland
⁶ Ruder Boskovic Institute, Zagreb, Croatia

15th Trento workshop, 17.-19.2.2020 (TREDI2020)

Why aluminium oxide?

- Increased use of p-type Si in detectors for high-luminosity environments
- Higher mobility of electrons in Si \rightarrow segmentation of n+ implants
- SiO₂ with its positive oxide charge does not insulate the segments without additional p-spray/p-stop implant

Aluminium oxide (Al₂O₃)

- High **negative** charge (~ 10¹² cm⁻²)
- Can be deposited at low temperature
- Good dielectric properties allows for higher oxide capacitances

Why aluminium oxide?

Atomic layer deposition

- A film is deposited by alternate pulsing of gaseous precursors over a substrate
- No gas-phase reactions, purges between the precursor pulses \rightarrow self-limiting surface reactions

Atomic layer deposition

- A film is deposited by alternate pulsing of gaseous precursors over a substrate
- No gas-phase reactions, purges between the precursor pulses \rightarrow self-limiting surface reactions
- Film growth slow and occuring in cycles → very thin layers can be grown with good precision
- Good film uniformity over relatively large areas, conformal growth

Considerations on Al₂O₃ in processing

Many useful insights and characterization methods from photovoltaic industry and research

... however, transfer to detector processing requires adaption

- Film thickness; thermal treatments (metal sintering, firing)
- Oxygen precursor in ALD
 - The best-known process for Al₂O₃ uses water as oxidant: indeed, best passivation quality (in terms of carrier lifetimes), best diode breakdown properties
 - ... but large blister-like delamination areas unusable in pixelated devices*
 - Addition of ozone improves performance \rightarrow consecutive pulsing of H_2O and O_3

Alignment marks

Ion implantation

Dry oxidation (implant drive-in)

Thermal oxide removal

Al₂O₃ field insulator

TiN bias resistors

Al metallization

Al₂O₃ surface passivation

Under-bump metallization

Characterization

Single-pad diodes

- IV
- CV
- TCT with red and IR laser

More in M. Bezak's talk

Characterization

- MOS capacitors
 - $CV \rightarrow C_{ox}, V_{fb} \rightarrow Q_{eff}$
 - ≈ -3·10¹² cm⁻²

- Resistor structures
 - IV \rightarrow resistance: \approx 15 k Ω / pixel resistor

J. Ott, TREDI 2020 19.2.2020

nnnnn

AC-coupled sensor

AC-coupled pixel sensor

- 52x80 double columns, pixel pitch 100 × 150 µm
- Capacitive coupling using Al₂O₃ and TiN biasing resistor: separation of DC leakage current from signal
- Two different bias grid schemes: bias line by implant or metal line
- TiW/Au under-bump metallization on sensor realized by liftoff lithography on individual samples, not full wafer

AC-coupled pixel sensor

AC-coupled pixel sensor

- Sensors flip-chip bonded to PSI46dig readout chip, from CMS Pixel outer layers Phase-I upgrade
- Configured and tested with detector test board (DTB) and pXar software
 - Dead pixels
 - Trimming = fine-tuning of individual pixel thresholds through trimbits
 - Adjusting of pulse height / gain pedestal
 - Finding and masking of hot pixels
 - Testing with laboratory gamma ray sources

- Increase in leakage current especially if bias voltage is ramped too fast – soon after full depletion of the sensor
 - Current flow over the surface or the edge...
 - Measurements close to depletion voltage, ca. -40 V
- Trimming to low thresholds not feasible: 100-120 (5-6 ke⁻) as opposed to CMS pixel sensor default 35 (1.75 ke⁻)

- Testing with gamma ray sources:
 - good for "calibration" and understanding the properties of our detector
 - no external triggering possible, very low absorption in Si
- Limited energy range due to a) lower absorption of Si towards higher energies, b) saturation of PSI46dig amplifier and ADC
- Mainly: Am-241 with 26.3 keV and 59.5 keV, Ba-133 with 31 keV and 81 keV, (Co-57 120 keV)

- Typically 10-20 dead pixels / assembly: < 0.5 %
- Similar number of hot or noisy pixels masked

 Clustering by obtaining pixel-by-pixel hit information: may improve resolution if there is charge sharing between pixels

Trimming

Sources

Clustering

- De-coupling of (high) current from performance in terms of noise and energy resolution
- Leaking of charge into implanted bias line?

Summary

- We have fabricated single pad diodes and pixel detectors using aluminium oxide: no SiO₂ left, no p-spray/p-stop
 - AC-coupling on sensor using AI_2O_3 and nitride biasing resistors
- Material and basic electrical properties studied with diodes, oxide properties from MOS capacitor measurements
 - Expected high negative oxide charge, leakage currents okay
- Functionality of pixel detectors verified by testing with radioactive sources
 - Testing with existing readout ASIC and test board is convenient, but cannot blindly use the same settings as for DC-coupled CMS Phase-I pixel detectors (need e.g. higher thresholds)

- More statistics with present and additional samples, further optimization of bias and trimming settings
- Hit efficiency and charge collection efficiency, spatial resolution from test beam data
 - Also check for leakage to bias line!
- Investigate HfO₂ in pixel area for more dielectric strength
 - Patterning not trivial: investigating chemical-mechanical polishing

HfO₂ patterned by CMP

Acknowledgements

Micronova Nanofabrication Centre

Helsinki Detector Laboratory

J. Ott acknowledges the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters for research funding

SUOMALAINEN TIEDEAKATEMIA

References

Alumina in strip detectors:

J. Härkönen et al., Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-Si) substrates, Nucl. Instr. Meth. Phys. Res. A 828 (2016) 46–51

TiN resistors, concepts for ALD in pixel sensors:

J. Ott, *Titanium nitride thin-film bias resistors for AC coupled segmented silicon detectors*, Master's thesis, University of Helsinki, Faculty of Science, Department of Chemistry, Helsinki (2015)

J. Härkönen, J. Ott et al., *Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors*, Nucl. Instr. Meth. Phys. Res. A 831 (2016) 2–6

Properties and processing of alumina:

J. Ott et al., *Detector processing on p-type MCz silicon using atomic layer deposition (ALD) grown aluminium oxide*, 33rd RD50 Workshop (2018) <u>https://indico.cern.ch/event/754063/contributions/3222806/</u>

J. Ott et al., *Processing of ac-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide,* Nucl. Instr. Meth. Phys. Res. A, doi:10.1016/j.nima.2019.162547

A. Gädda, J. Ott et al., AC-coupled n-in-p pixel detectors on MCz silicon with atomic layer deposition (ALD) grown thin film process, HSTD12 (2019), <u>https://indico.cern.ch/event/803258/contributions/3582878/</u>

Backup

Considerations on Al₂O₃ in processing

 \rightarrow "blistering" of Al₂O₃ film as consequence of H segregation to interface \rightarrow blisters can be almost the same size as pixels!

Proton microprobe

At RBI IBIC facilities, cf. Aneliya's talk

PSI46dig-geometry AC-coupled pixel sensor with Al2O3 insulator

https://www.irb.hr/eng/Research/Divisions/Division-of-Experimental-Physics/Laboratory-for-ion-beam-interactions

Observations

- Reduction of N_{eff} and subsequent type inversion with increasing gamma ray dose
 - "clean", no double junction effect
- The same phenomenon is visible also for 2017 batch, but there not up to SCSI due to lower starting resistivity = higher doping
- Leakage current scales well with gamma ray dose
- Does not appear to affect charge collection significantly

Acceptor removal? Donor creation? Hole trapping due to Al₂O₃?

Summary

- Al₂O₃ films were successfully integrated into a 6" Si detector process as replacement for the SiO₂ + p-spray/p-stop entity
- Devices are well characterizable by standard methods: CV, IV, TCT
- These results tell more about the MCz Si bulk properties than the insulator oxide
 - Positive space charge building up due to irradiation, may lead to type inversion depending on initial doping concentration
 - Interpretation of MOS capacitor CV curves for extraction of oxide charge requires some considerations/assumptions and comparison with pad CV data

What next

- Further characterization of pixel sensors
 - Flip-chip bonding
 - Evaluation of the assembly in the lab and at test beam
- Annealing..?
 - So far, no anneal after gamma irradiation, all measurements at RT
- Irradiation with p, n
- Defect spectroscopy (DLTS) to study mechanism behind acceptor compensation